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1. IKTRODUCTION 

The theory of nonnegative irreducible matrices, which was initiated 

by Perron [ll] and Frobenius [4], is of fundamental importance in the 

theory of the iterative solution of matrix equations (cf. [7, 15]), derived 

from the discretization of elliptic boundary value problems. This is not 

only valid for the standard discretizations, such as those described in 

[15], but also for more refined methods (cf. [l, 2, 12, 141). 

We shall not be concerned here explicitly with such applications. 

However, our results give some criteria for deciding whether a matrix 

(or its inverse) is a nonnegative irreducible matrix (cf. Theorems 1, 2, 

4, and 5) and as such, they might be of interest in view of possible applica- 

tions to numerical analysis. 

Theorem 1 as well as the second part of Theorem 4 are extensions of 

similar results proved in the case of positive stochastic matrices in [13], 

and in the case of positive matrices in [8] and [9]. In this paper we extend 

those results to the case of nonnegative irreducible matrices, among other 

things. 

For completeness, we mention that Fiedler and Ptak (cf. [4]) have 

recently given a necessary and sufficient condition for a matrix to be 

monotone with a positive inverse, although their methods are different in 

essence. 

2. A NECESSARY AND SUFFICIENT CONDITION FOR A LINEAR OPERATOR TO 

BE REPRESENTABLE BY A NONNEGATIVE IRREDUCIBLE MATRIX 

We first recall a few definitions: An n x n real matrix A = (a,J is 

said to be nonnegative, or positive, iff ati 3 0, or > 0, respectively, for 
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all 1 < i, j < n. An n x n matrix A is reducible iff there exists an n x n 

permutation matrix P such that 

where A,, is an r x r submatrix and A,, is an (n - Y) x (PZ - Y) sub- 

matrix, for some 1 < I < n - 1. If no such permutation exists, then A is 

irreducible (for detailed accounts on the theory of irreducible nonnegative 

matrices, we refer to [6], [7], or [15]). 

The spectral radius p(A) of a matrix A is the greatest modulus of its 

eigenvalues. 

A collection of (n + 1) points pi in a vector space E, of dimension n 

forms the vertices of an n-simtplex S, if and only if the (n + 1) x (n + 1) 

determinant whose first n rows are formed with the coordinates of the 

vectors pi over a basis in E, and whose last row is composed of l’s is 

different from zero; the n-simplex S, itself is the collection of all vectors 

of the formx = 2::: ~~p~, 0 < cci < 1, 1 < i < n + 1, ~~~~cx~= 1 (i.e., 

is the convex hull of the vertices pi). A face of the n simplex S, is any 

m-simplex S, formed with a subcollection of m of the vertices pi(l <m < n) 

of the n-simplex S,. For details, we refer to [lo]. 

A stochastic matrix A is a nonnegative matrix such that the sum of 

the elements of each row of A is 1 (cf. [6, p. 831). 

Let there be given a real Euclidean space E,+I, of dimension n + 1. 

Let & be a linear operator acting from E,+_, into itself. We denote by 

{Xi, 1 < i < n + l} a canonical basis in E,+l, and by A the (n + 1) x 

(n + 1) real matrix which represents the linear operator in the above 

basis {xi, 1 < i < n + l}. We begin with 

LEMMA 1. Let the matrix A be nonnegative and irreducible. Then 

the space E,+1 can be written as the direct sum E,+l = E, @ E,, where 

both the subspaces E, and E, are invariant under the operator &, and E, 

and E, have the dimensions n and 1, respectively. 

Proof. Since A is a nonnegative irreducible matrix, its spectral 

radius p(A) is a simple eigenvalue (cf. [15, p. 301); hence by a standard 

result in matrix theory (cf. [6]), the space E, +1 can be written as the 

direct sum of the subspace E,, spanned by the eigenvector e corresponding 

to the eigenvalue p(A), and of the subspace E, which is a subspace of 

dimension n of E,+l, also invariant under s$. Q.E.D. 
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In what follows, we shall assume that the eigenvector e is chosen 

so as to have all its coordinates positive; that this is indeed possible 

follows from [15, p. 301. 

LEMMA 2. Let the matrix A be nonnegative and irreducible. Denote 

by C the cone generated by the basis vectors {xi, 1 < i < n + 11, i.e., C = 

{x~E,,.,;x= C~~:Pixi,P,>,O,l~~i~+l}. The%E,flC=O,where 

E, is the subspace introduced in Lemma 1, and 0 denotes the zero vector 

of -%$+l. 

Proof. Assume the conclusion of Lemma 2 is false, i.e., let e = 

{x E E, .~1 ; x # 0, x E E,, x E C} be nonempty. Given any vector x E c, 

A % E C since A is nonnegative, A % # 0 since A is irreducible, and finally 

A% E E, since E, is an invariant subspace. Therefore AC C e. Using 

the Brouwer’s fixed point theorem as in [3], there exists an eigenvector, 

say 0, of A in C, hence also in C. However, since the matrix A is nonneg- 

ative and irreducible, the only eigenvector of A in C is the vector e introduced 

in Lemma 1 (cf. $5, p. 341). This is a contradiction, since e E E,. Q.E.D. 

LEMMA 3. Given any basis vector xi, 1 < i < n + 1, we can write xi in 

a unique way as x, = ,uje + pi, where pi > 0, and pi E E,. 

Proof. That the above decomposition is possible in a unique fashion 

follows from the decomposition E, +I = E, @ E, of Lemma 1. Hence 

it remains to prove that pi > 0. Let us first observe that ,ui # 0, since 

xi is not in the subspace E,, by Lemma 2. 

Since E, is a subspace of dimension n of E,+l, it can be written as 

E, = {x E ES+,; F,(x) = 0}, where F,(x) is a linear and homogeneous 

expression in the coordinates of x. Since xi = ,u,e + pi, it follows by 

linearity that F,(xJ = piF,(e) + F,(p,) = ,uuiF,(e), since pi E E,. Finally, 

the vectors xi and e are in the same half-space determined by E, (since 

both are in C and E, fl C = 0 by Lemma 2). Hence F,(xJ and F,(e) 

are of the same sign, i.e., pi > 0, for any i. Q.E.D. 

For convenience, we henceforth assume that all the coefficients ,ui 

are equal to 1. This is no loss of generality: it amounts to performing 

a positive scalar multiplication on each basis vector. 

LEMMA 4. With the above assumption, each basis vector xi can be 

written as xi = e + pi, 1 < i < n + 1. Then, the (n + 1) points pi are the 

vertices of an Iz-simplex S, in E,. 
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Proof. To show that the (w + 1) points p, are actually the vertices 

of an %-simplex, it suffices to prove that the (a + 1) x (n + 1) deter- 

minant, where the n first elements of each column represent the coordinates 

of the p,‘s over any given basis in E,, and whose last row is composed of 

l’s, is different from zero. But this is nothing else than the determinant 

of the basis vectors x,, 1 < i < n + 1, expressed over a basis of E, @ E,: 

hence, it is different from zero. Q.E.D. 

Consider now any vector x in C fl (C + IZ-‘,). Since it is in C, it can be 

written as x = Cr?t uixi, all the cc,‘s being > 0, and since it is in (e + E,), 

it can also be written as x = e + x,, for some x, E E,. On the other hand, 

by Lemma 3, we have 

n+l n+l c 1 
n+l 

x= Cuixi= Cui e+Caip,. 
i=l i=l i=l 

Hence, by the uniqueness of the decomposition of the vector x, we must 

have 2::: tci = 1, and x, = cyz: tcipi. Since the cc;‘s are all 3 0, it 

follows that x, belongs to the n-simplex S,. Conversely, given any point 

x, E S,, any point of the form e + x, belongs to C tl (e + E,) and it is 

clear that this correspondence is one-to-one. 

As a consequence let us observe that the n-simplex S, contains the 

origin 0 strictly in its interior. We have thus proved 

LEMMA 5. There exists a bijection between the n-simplex S, and the 

set Cfl(e+E,). 

We now achieve the series of lemmas with the key result: 

LEMMA 6. Let the linear operator &’ in E,+1 be represented by a non- 

negative and irreducible matrix A over the basis {xi, 1 < i < n>. Then, 

the restriction of p(A)-l& to the subspace E, ma@ the n-simplex S, into 

itself, i.e., 

p(A)-l~S, c S,. (1) 

Moreover, it maps the n-sim$lex S, strictly into its interior if and only if 

the matrix A is positive. 

Proof. Since the matrix A is nonnegative and irreducible, it easily 

follows from Lemma 3 that Ax E C whenever x E C fl (e + E,). Such a 
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vector x can be written (Lemma 5) as x = e + x,, where x, E S,. Recalling 

that p(A) > 0, we can write: Ax = Ae + Ax, = p(A)(e + p(A)-PAX,). 

Thus, the vector p(A)-lAx, belongs to the n-simplex S,, since Ax E C. 

The last statement of Lemma 6 follows by observing that the matrix 

A is positive if and only if Ax, is a vector with all its components strictly 

positive, for any 1 < i < n + 1. Q.E.D. 

We are now able to prove 

THEOREM 1. In the Euclidean space E,+l, let ._& be a linear operator 

represented by a nonnegative irreducible matrix A. Then, 

(1) the space En+1 can be decomposed as the direct sum E,_, = E, @ E,, 

where both E, and E, (of dimensions n and 1, respectively) are invariant under 

A (E, is spanned by the eigenvector e corresponding to the simple eigenvalue 

p(A) > 0); 
(2) in the subspace E,, there exists an n-simplex S, containing the origin 

0 strictly in its interior, &aicF, is mapped inside itself under the restriction 

of .&/p(A) to the subspace E, (and inside its interior if the matrix A is 

positive) ; 

(3) no face of the n-simplex S, is invariam under this transformation. 

Conversely, let there be given a linear operator ,d in the Euclidean space 

E n+l. Assume that. 

(4) the space E,+1 can be decomposed as the direct sum E, ,_1 = E, @ E,, 

where both the subspaces E, and E, (of d imensions n and 1, reqhectively) 

are invariant under &. The subspace E, is spanned by an eigenvector e 

corresponding to a positive eigenvalue 2. Moreover, in the subspace E,, 

there exists an n-simplex S, of vertices pi, 1 < i < n + 1, and containing 

the origin 0, which is mapped inside itself under the restriction of kl.Oe to 

the subspace E,L, and finally, 

(5) no face of the n-simplex S, is invariant under the restriction of A-l& 

to the subspace E,. 

Then, the operator JY is representable by a nonnegative irreducible matrix 

A, with spectral radius p(A) = 1, in any basis of the form {xi = e $ ,up,, 

1 < i < n + l}, where p is an arbitrary positive scalar. 

Proof. The first part follows readily from Lemmas 1 to 6. 

Conversely, let there be given a basis of the form x, = e + ,up,, 1 < 

i < n + 1, where p is an arbitrary positive scalar. Consider a nonzero 
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vector x in the cone C generated by the xi’s Then a simple computation 

using hypothesis 4 alone shows that Ax E C. Finally, condition 5 will 

guarantee irreducibility. In particular, it implies that the moduli of the 

eigenvalues of the operator A? corresponding to eigenvectors contained 

in the subspace E, are less than or equal to ;I (cf. [15, p. 301). Q.E.D. 

Remark. In our geometrical interpretation, the concept of a p-cyclic 

nonnegative irreducible matrix (cf. [15, p. 351) can be formulated as 

follows : 
In addition to properties 1, 2, and 3, there exists a partition 

{PllJ . . . . p;L;p12 ,..., pf*;...$ ,..., p? } ze of the vertices of the fz-simplex 

S, such that the associated faces gk, 1 < k <p (the face 8, being 

generated by the vertices {plk, . . , pfh}) satisfy 

Remark. It is clear that condition 4 alone is sufficient to guarantee 

the representation of the operator & by a nonnegative matrix, which 

is not necessarily irreducible. However, nothing can be said in general 

about the converse, since the results of Lemmas 1 and 2 depended essen- 

tially on the assumption of irreducibility. 

Example. Let the operator & be represented in E, by the matrix 

2-2-l 0 

-2 2 
A= -I 0 

0 -1’ 
2 -2” 

0 -1 -~2 2 

The eigenvectors and eigenvalues of the operator ~2 are respectively 

e = {l, ~ 1, - 1, l}, p(A) = 5, 

e, = (1, 1, 1, l}, 3r, = - 1, 

c2 = {- 1, - 1, 1, 11, A,- 1, 

e3 = (1, - 1, 1, - l}, A3 = 3. 

Hence, we let E, = span(e), and E, = span{o,, e2, es}. In E,, the 

following are the vertices of a S-simplex S, (in fact, a regular tetrahedron) : 

p1 = - e2 - L es, 
V2 
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pz = e2 - L c3, 

VT 

p3 = “r + Lea, 
VT 

p4 = - PI + +3. 

As a new basis, we choose x, = pi + (1/1/i$e, 1 < i < 4. Then in 

that basis, the operator ~9 is represented by the positive matrix 

/5 3 1 l/ 

A’_ & 3 5 11~ 

1 1 3 5i’ 

It can be readily checked that each vertex pi, 1 < i < 4, is mapped 

strictly in the interior of the S-simplex S, under the restriction of @‘/Ei to E,. 

As a complement to Theorem 1, we have 

COROLLARY 1. Assume that the linear operator .d is representable b_,v 

a nonnegative (07 positive) irreducible matrix A’. Then the operator d is 

also representable b_v the transpose of a stochastic (07 positive stochastic) 

matrix A, up to a ndti$dicative factor equal to the spectral radius of the 

operator d. 

Proof. By Theorem 1, the operator &’ can be represented as follows, 

after we have chosen, once and for all, a basis in E,: 

0 1 
0 

A, 
A’ = p(A) ~ (n x 92) 

. t components on E,, 

. ,’ 

.I 0~ 

0 0 ... 0 1 ‘} components on E,. 

The vertices pi of the n-simplex S, in E, can accordingly be represented 

by the column vectors 
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Pi = 1 < i < n + 1, in the same basis. 

pi1 

By Theorem 1, it follows that 

where qj>O, 1 <i<~+ 1, and 

(all the c+‘s being positive if A is a positive matrix). 

Let thk matrix P be defined as 

Pin P2**. .Pn+l,n 
,l l..- 1 

Then the above relations (2) and (3) can be rewritten in matrix form as 

A’P = p(A) PA, (4) 

where A = (aij) is the transpose of a stochastic matrix. The proof is 

achieved by observing that the matrix P is nonsingular (cf. Lemma 4). 

Q.E.D. 

Remark. Corollary 1 is a generalization of a result of [lo] 

3. A NECESSARY AND SUFFICIENT CONDITION FOR AN IRREDUCIBLE MATRIX 

TO BE MONOTONE 

An (VZ + 1) x (n + 1) matrix A is said to be monotone if and only 

if its inverse A-l exists and is a nonnegative matrix. Monotone matrices 
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theory plays a fundamental role in the derivation of finite difference 

schemes for elliptic operators (cf. [l, 2, 7, 12, 14, 151). 

Before stating Theorem 2, let us observe the obvious fact that a 

nonsingular matrix A is irreducible if and only if its inverse A-l is irreduc- 

ible. 

THEOREM 2. Let there be given an (n + 1) x (n + 1) irreducible and 

monotone matrix A, representing a linear operator &’ in a basis {xz, 1 < 

i < n + 1) of the real Euclidean space E, +1. Then, 

(1) the space E,+, can be witten as the direct sum E,+l = E, @ E,, 

where both E, and E, aye invariant under A, and the subspace E, is spanned 

by the eigenvector e corresponding to the simple eigenvalue a(A) = p(A-l); 

(2) E, fl C = 0, where C is the cone generated by the basis vectors {x,, 1 < 

i ,( n + l}. 

(3) Let the positive numbers xi be uniquely determined by the condition 

that (x,xi - e E E,, 1 < i < n + 1. Then, in the subspace E,, the n-simplex 

S,, of vertices pi = CI,X( - c, 1 < i < n + 1, is contained in its image under 

the restriction of the operator a( to E,. 

Conversely, let there be given an irreducible matrix A in the basis {xz, 1 < 

i < n + 1) of the space E, +l. Assume that 

(4) the space E, + I can be decomposed as the direct sum E, f 1 = E, @ E,, 

where both the subspaces E, and E, (of dimensions n and 1, respectively) 

are invariant under A. Moreover, the subsfiace E, is generated by an eigen- 

vector e corresponding to a positive eigenvalzte a(A) of the matrix A. Further, 

(5) condition 2 holds, and finally, 

(6) condition 3 holds. 

Then the matrix A is mortotone. 

Proof. It is an immediate consequence of Theorem 1 applied to the 

matrix A-l (conditions 4, 5, and 6 imply that A-l exists). Q.E.D. 

Example. Let 

A= 
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One can easily check that a(A) = p(A-l) = 1, and e = (1, 1, l}. The 

subspace E, is the plane (x; x1 + x2 + xa = 0} and the restriction of 

A to E, amounts to a scalar multiplication by - 5. The Z-simplex S, 

of vertices pi, pz, p3 is an equilateral triangle and clearly S, C - X5,. 

Since it is even strictly contained in S,, it follows that A-l is a positive 

matrix and, actually, the inverse matrix A-l is given by 

,I 2 2( 
‘4-11: 2 1 2. 

~ 1 2 2 18 

In Section 4, we shall give some sufficient criteria allowing us to use 

the results of Theorems 1 and 2. However, we need first to describe the 

“regular” n-simplex and this is the purpose of the first part of Section 4. 

4. THE REGULAR ?kSIXIPLEX AND ITS APPLICATIONS 

Let EnTl be metrized by the usual Euclidean metric: d(x, y) = 

{C;:: jXi - Yi(2}? 

In any space of dimension 3 PL, an n-simplex T, of vertices p,, 1 < 

i < n + 1, is said to be regular with center at the ori@ if and only if the 

following conditions are satisfied : 

4P.i, 0) = d(Pj, 0) = 0% 1 <i,j<n+l, i#j, (5) 

d(Pi, Pi) = d(P,, PL) = pn, 1 <i,j<pIt+ 1, i+j, (6) 

I <k,l<n+ 1, kfl. 

Observe that a regular n-simplex is the generalization of an equilateral 

triangle in E,, k 3 2, or of a regular tetrahedron in E,, k >, 3. 

The previous results will allow us to construct such an n-simplex. 

This is the purpose of 

THEOREM 3. There exists a regular n-simjdex T, with center at the 

origin in an n-dimensional subspace E, of the Euclidean space EStl. More- 

over, the following metric properties hold: 

iu 
n 

= 2(n + 1) 1’2;j 
[ lx 7% 

The radii R, and Y,, of the circumscribed and inscribed spheres, respectively, 

are given by 
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& = &, and 
&I yti z-. 

n 

Finally, we have that 

XT, c 7‘, if and onl_v if -I,Cx<l, 
12 

149 

(8) 

and 

KT, C int I‘, (10) 

Proof. In the Euclidean space E, ,~ 1 provided with the usual canonical 

basis (xi; 1 < i < PZ}, consider the (n -t 1) x (n + 1) matrix 

(11) 

1 --x I ~ x ... 1 + ?ta 

for any real a. It is readily seen that we can decompose the space E,+1 

as E n+l = E, @ E,, where both the subspaces E, and Enll are invariant 

under A ; E, is spanned by e = (1, 1, . , l} and E, is its orthogonal 

complement: E, = {x; C’z$ z - x - 01. The vector e is an eigenvector 

corresponding to the eigenvalue 1, and the restriction of A(a) to E, 

merely amounts to a scalar multiplication by a. 

Clearly, the following properties hold : 

a > 1: A has alternate signs among its coefficients, 

a= 1: A = 1 (hence A is a reducible nonnegative matrix), 

- k < GI < 1 : A is a positive matrix (hence irreducible), 

x = - k: A is a nonnegative irreducible matrix, 

1 

u=+n: 
A has alternate signs among its coefficients. 

(12) 
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Call T, the n-simplex associated with the matrix A along the lines 

of Section 2 (notice that it is independent of N). As an immediate con- 

sequence of Theorem 1 and relations (12), it follows that the inclusion 

relations (9) and (10) are valid. 

Next, it is easily verified that each vertex y, of ?‘, has coordinates 

pi = {-- 1, - 1, . . . , - 1, n, - 1, . , - l}, i.e., pi = (~2 + 1)~~ - e. 
From this, the formulas (5), (G), and (7) directly follow, proving that 

the n-simplex T, is regular. 

Finally, we compute the radii of the circumscribed and inscribed 

spheres, respectively: each point x, on the boundary aT, of T, can be 

written as 

nrl n+1 

XJ = 2 ‘zipi, pi=1, u,bO, l<i<n+l, (13) 
i=l 

where at most n of the coefficients CC, are different from zero. Clearly 

then, K, = SUP~,~~~ d(x,, 0) and Y, = inf,V,e aT, d(x,, 0). An easy computa- 

tion yields that dyxa, 0) = - (n + 1) + (n + 1)2 2’2: LX,~, from the 

expression of x, as given in (13). A simple argument will then give the 

formulas (8). 

Remark. For Q # 0, the inverse of the matrix A(X) as given in (11) 

is explicitly given by 

hlL+?Z (--_l . . . TX- 1 i 
dc ~- 1 X+12 ... x -- 11 

i x _._ 1 rJ.--1 ... r.+fl 

Moreover, the following properties hold: 

a> 1: [A(a)]--l is a positive matrix, 

ct= 1: [A(R)]--l = I is a reducible nonnegative matrix, 

‘12 < CI < 1: LA(a) j-l has alternate signs among its coefficients, (15) 

tc = - n: [A(a)]-r is a nonnegative irreducible matrix, 

a<-n: [A(a)]-l is a positive matrix, 
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all properties that could have been derived directly from the results 

of Section 3 coupled with those of Theorem 3. 

As applications, we now state, without proofs, the two following 

results, which are easy consequences of Theorems 1, 2, and 3: 

THEOREMS 4 (Sufficient condition for a diagotializable matrix to be 

similar to a nonnegative matrix). Let the diagonal matrix D he of the form 

D = diag(1, il,, &, . . . , A,}, 

where all the &‘s are real numbers. Then, 

(1) if jilil < l/n, 1 < i < n, the diagonal matrix D is similar to a 

nonnegative matrix; 

(2) if II,1 < l/n, 1 < i < n, the diagonal matrix D is similar to a 

positive matrix. 

THEOREM 5 (Sufficient condition for a symmetric matrix to be monotone). 

Let A be a symmetric matrix with eigenvalue 1 corresponding to the eigenvector 

(! = (1, 1,. . .) 11, and let A,, 1 < i < n, be its other eigenvalues. Then, 

(1) if j&j 2 n, 1 < i < n, the matrix A is monotone; 

(2) if Pi/ > n, 1 < i < YL, the matrix A is monotone; moreover the 

inverse matrix A-l is positive. 
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